AWS re:Invent 2024 Overview
AWS re:Invent 2024, held December 2-6, 2024, saw numerous new services and features announced, centered on generative AI.
Reference: AWS re:Invent 2024
Amazon Nova - New Foundation Models
Nova Model Family
AWS has introduced its own developed foundation models.
| Model | Features | Use Cases |
|---|---|---|
| Nova Micro | Text-only, fastest | Chat, summarization |
| Nova Lite | Multimodal, low cost | Image understanding, document processing |
| Nova Pro | Balanced | General tasks |
| Nova Premier | Highest performance | Complex reasoning (Q1 2025) |
Usage Example
import boto3
bedrock = boto3.client('bedrock-runtime')
response = bedrock.invoke_model(
modelId='amazon.nova-pro-v1:0',
body={
"messages": [
{"role": "user", "content": "Tell me about AWS best practices"}
],
"max_tokens": 1024
}
)
Reference: Amazon Nova
Amazon Nova Canvas & Reel
Nova Canvas (Image Generation)
response = bedrock.invoke_model(
modelId='amazon.nova-canvas-v1:0',
body={
"taskType": "TEXT_IMAGE",
"textToImageParams": {
"text": "Futuristic office building exterior at dusk"
},
"imageGenerationConfig": {
"width": 1024,
"height": 1024,
"quality": "premium"
}
}
)
Nova Reel (Video Generation)
response = bedrock.invoke_model(
modelId='amazon.nova-reel-v1:0',
body={
"taskType": "TEXT_VIDEO",
"textToVideoParams": {
"text": "Silhouette of a person walking on the beach, sunset"
},
"videoGenerationConfig": {
"durationSeconds": 6,
"fps": 24
}
}
)
Amazon Q Developer Enhancements
Agent Features
# Autonomous task execution with Amazon Q Developer
@workspace Add unit tests to this feature
@workspace Scan for and fix security vulnerabilities
@workspace Generate API documentation
New Features
| Feature | Description |
|---|---|
| /dev | Feature implementation automation |
| /test | Automatic test code generation |
| /doc | Documentation generation |
| /review | Code review |
| /transform | Java 8→17 migration support |
Reference: Amazon Q Developer
SageMaker HyperPod
Overview
New infrastructure that streamlines large-scale model training.
# HyperPod Cluster Creation
import boto3
sagemaker = boto3.client('sagemaker')
response = sagemaker.create_cluster(
ClusterName='my-hyperpod-cluster',
InstanceGroups=[
{
'InstanceGroupName': 'training-nodes',
'InstanceType': 'ml.p5.48xlarge',
'InstanceCount': 64,
'LifeCycleConfig': {
'OnCreate': 's3://my-bucket/setup.sh'
}
}
]
)
Automatic Failure Recovery
# Automatic response to failures
- Node failure detection: Automatic
- Checkpoint restoration: Automatic
- Node replacement: Automatic
- Training resumption: Automatic
Reference: SageMaker HyperPod
Aurora DSQL
Serverless Distributed SQL
A PostgreSQL-compatible distributed database has arrived.
-- Automatic synchronization across multi-region
CREATE TABLE orders (
id UUID PRIMARY KEY,
customer_id UUID,
total DECIMAL(10,2),
created_at TIMESTAMP
);
-- Scales while maintaining strong consistency
SELECT * FROM orders WHERE customer_id = ?;
Features
| Feature | Description |
|---|---|
| Scalability | Unlimited scale-out |
| Availability | 99.999% SLA |
| Consistency | Strong consistency guaranteed |
| Compatibility | PostgreSQL compatible |
Reference: Amazon Aurora DSQL
S3 Tables
Managed Apache Iceberg
import boto3
s3tables = boto3.client('s3tables')
# Create table
response = s3tables.create_table(
tableBucketARN='arn:aws:s3tables:us-east-1:123456789:bucket/my-bucket',
namespace='analytics',
name='events',
format='ICEBERG'
)
# Data analysis (from Athena)
# SELECT * FROM s3tables.analytics.events
# WHERE event_date >= '2024-01-01'
Performance
- Query speed: Up to 3x faster
- Storage: Up to 10x compression
- Automatic compaction supported
Lambda SnapStart for Python/.NET
Python Support
# Lambda function
import json
from my_heavy_module import initialize_model
# Execute during SnapShot time, not cold start
model = initialize_model()
def handler(event, context):
return {
'statusCode': 200,
'body': json.dumps(model.predict(event['input']))
}
Impact
| Language | Before | SnapStart |
|---|---|---|
| Python | ~2-3s | ~200ms |
| .NET | ~1-2s | ~100ms |
Reference: Lambda SnapStart
Other Notable Announcements
Trainium2
- Next-generation ML chip
- 4x performance
- 2x energy efficiency
Graviton4
- Latest Arm processor
- 30% performance improvement
- 40% power efficiency improvement
EKS Auto Mode
# Auto scaling with EKS Auto Mode
apiVersion: apps/v1
kind: Deployment
metadata:
name: my-app
spec:
replicas: 3 # Automatically adjusted
selector:
matchLabels:
app: my-app
Summary
AWS re:Invent 2024 made clear AWS’s massive investment in generative AI.
- Amazon Nova: AWS’s own foundation models
- Amazon Q Enhancements: Improved developer productivity
- Aurora DSQL: A new era of distributed SQL
- Infrastructure Evolution: Trainium2, Graviton4
These new services make AI/ML development on AWS more efficient.
← Back to list